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Models We Will Cover

Focusing on brief overview of each and how to compile on 
Crusher:

• Kokkos

• OpenMP Offload

• HIP

Follow along with examples: 
https://github.com/olcf/frontier_gpu_programming_models_examples

If you don’t have Crusher access, you can operate with these on Summit as 
well (modifying to compile for Nvidia GPUs)

https://github.com/olcf/frontier_gpu_programming_models_examples
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HIP
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What is HIP?

• AMD’s API for GPU programming. 

• Gives low level control (relative to other models I will talk about) 
to write code for computing on GPUs

• Almost 1 to 1 replacement of CUDA (cudaAbcCall -> 
hipAbcCall)
– Includes replacements for some CUDA libraries like cufft (hipfft) and 

cublas (hipblas)
– Some CUDA calls not supported, because they are deprecated or not 

yet implemented for HIP

• Existing tools (hipify-perl, hipify-clang) for converting your CUDA 
code to HIP 
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Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

__global__ void fill_array(int *a) {
int i = blockDim.x * blockIdx.x +

threadIdx.x;
a[i] = i + 2;

}
...
int *a;
hipMalloc(&a, N*sizeof(int));
hipLaunchKernelGGL((fill_array),
dim3(N/256), dim3(256), 0, 0, a);

This is if you were writing your own HIP kernel. There are also a lot of prebuilt functionality in libraries 
like hipblas and hipfft. You may not need to write that matrix multiplication routine by hand!
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Things to Note

• No native Fortran API. You have to write your GPU code in C++ 
and import it to Fortran through ISO_C_binding
– AMD also provides hipfort library with a bunch of those bindings made 

for you

• CMake support for HIP is still a work in progress. Watch 
tomorrow’s talk by Balint Joo for more info on HIP and CMake

• Make sure you set -DAMDGPU_TARGETS="gfx90a" when running 
cmake. Default is
AMDGPU_TARGETS="gfx900;gfx906;gfx908;gfx90a;gfx1030” but 
gfx1030 is not supported by the Cray compiler.
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Resources
• Basic tutorial if you have no CUDA knowledge (still a work in progress) (includes Summit 
specific instructions)
– https://github.com/olcf-tutorials/HIP_from_scratch

• HIP Tutorial if you're already familiar with CUDA (this also covers how to use HIP with 
Fortran) (includes Summit specific instructions)
– olcf page: https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
– repo: https://github.com/olcf/HIP_for_CUDA_programmers

• hipfort (HIP bindings for fortran)
– https://github.com/ROCmSoftwarePlatform/hipfort

• API Guide
– https://docs.amd.com/category/HIP%20API%20Guides

• hipify (tool to convert cuda code to hip)
– https://github.com/ROCm-Developer-Tools/HIPIFY

• HIP-CUDA API support table 
– https://github.com/ROCm-Developer-Tools/HIPIFY#cuda-apis

• Cuda training series (most of the knowledge still applies for HIP)
– https://www.olcf.ornl.gov/cuda-training-series/

https://github.com/olcf-tutorials/HIP_from_scratch
https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
https://github.com/olcf/HIP_for_CUDA_programmers
https://github.com/ROCmSoftwarePlatform/hipfort
https://docs.amd.com/category/HIP%20API%20Guides
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCm-Developer-Tools/HIPIFY
https://www.olcf.ornl.gov/cuda-training-series/
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OpenMP Offload
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What is OpenMP?
• OpenMP is the standard for thread based parallelism on shared 

memory systems

• Code looks like normal serial code, with directives annotating
the code to give hints on how to parallelize.

int a[N];
#pragma omp parallel for
for(int i = 0; i<N; i++) {
a[i] = i+2;

}
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What is OpenMP Offload?
• Offload was introduced in OpenMP 4.0 standard
– New directives to offload data and computation to devices like GPUs

• Directives specified as comments in Fortran, and #pragma in C
– Supported compilers will determine how to parallelize the code based 

on your directives
– If compiler doesn’t support, it will fallback to compiling for normal serial.

• Offload will take care of transferring data from host to device, 
perform compute on device, and transfer data back to host. 
– Based on the directives you specify
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Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

int a[N];
#pragma omp target teams distribute parallel for
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

// fortran would look like
!$omp target teams distribute parallel do 
<do loop>
!$omp target teams distribute parallel do 
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Things to Note

• GCC currently doesn't support offloading for MI250X 
accelerators yet. Only Cray and AMD support this at the 
moment. 

• Clang based compilers (Cray, AMD) don't support loop 
directives yet. 

• When compiling with hipcc for the examples, you get "loop not 
vectorized" warnings from the LLVM optimizer because hipcc
add –O3 by default
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Resources

OpenMP offload tutorial series from OLCF (includes Summit instructions):
• https://github.com/olcf/openmp-offload
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
• https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/

text tutorial: https://enccs.github.io/openmp-gpu/

https://github.com/olcf/openmp-offload
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/
https://enccs.github.io/openmp-gpu/
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Kokkos
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What is Kokkos?
• C++ library for offloading onto various backends (CUDA, OpenMP, HIP, 

potentially others)

• Unlike others, not part of the compiler. You manage the source (or 
module load it)

• Aims to be descriptive, not prescriptive
– Less fine grained control, but fewer footguns
– maps work to resources

• Many different backends supported, including HIP for GPU and OpenMP 
on CPU (as well as serial)

• Influences and is influenced by the C++ standard

• Primarily developed by Sandia, a number of applications written

• RAJA is similar : https://raja.readthedocs.io/en/develop/index.html
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Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i + 2;
}

// defaults to allocating and
// running on GPU if
// compiled for GPU
Kokkos::View<double*> a( “a”, N );
Kokkos::parallel_for(“label”, N,
KOKKOS_LAMBDA(int i) {
a( i ) = i + 2;

}
);
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Resources

• Tutorial repo: https://github.com/kokkos/kokkos-tutorials

• Condensed short tutorial video: https://www.youtube.com/watch?v=6Ts6k2Nas5w
(slides: https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short)

• Long tutorial (slides also in the github) modules 1-8: https://github.com/kokkos/kokkos-
tutorials/wiki/Kokkos-Lecture-Series

• main documentation: https://kokkos.github.io/kokkos-core-wiki/index.html

• Kokkos source code on Github: https://github.com/kokkos/kokkos

https://github.com/kokkos/kokkos-tutorials
https://www.youtube.com/watch?v=6Ts6k2Nas5w
https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos

